副标题: 适用地:【#ahj】 年份:【2010年高考卷】 关注:3次 分享到:
2010年普通高等学校招生全国统一考试(安徽卷)
数 学(文科)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页。全卷满分l50分,考试时间l20分钟。
考生注意事项:
1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真核对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。务必在答题卡背面规定的地方填写姓名和座位号后两位。
2.答第Ⅰ卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.答第Ⅱ卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上书写,要求字体工整、笔迹清晰。作图题可先用铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效。
4.考试结束,务必将试题卷和答题卡一并上交。
参考公式:
S表示底面积,h表示底面上的高
如果事件A与B互斥,那么 棱柱体积V=Sh
P(A+B)=P(A)+P(B) 棱锥体积V=
第Ⅰ卷(选择题 共50分)
一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中.只有一项是符合题目要求的.
(1)若A=,B=,则=
(A)(-1,+∞) (B)(-∞,3) (C)(-1,3) (D)(1,3)
(2)已知,则i()=
(A) (B) (C) (D)
(3)设向量,,则下列结论中正确的是
(A) (B)
(C) (D)与垂直
(4)过点(1,0)且与直线x-2y-2=0平行的直线方程是
(A)x-2y-1=0 (B)x-2y+1=0
(C)2x+y-2=0 (D)x+2y-1=0
(5)设数列{}的前n项和=,则的值为
(A) 15 (B) 16 (C) 49 (D)64
(6)设abc>0,二次函数f(x)=a+bx+c的图像可能是
(7)设a=,b=,c=,则a,b,c的大小关系是
(A)a>c>b (B)a>b>c (C)c>a>b (D)b>c>a
(8)设x,y满足约束条件则目标函数z=x+y的最大值是
(A)3 (B) 4 (C) 6 (D)8
(9)一个几何体的三视图如图,该几何体的表面积是
(A)372 (C)292
(B)360 (D)280
(10)甲从正方形四个顶点中任意选择两个顶点连成直线,一页从该正方形四个顶点中任意选择连个顶点连成直线,则所得的两条直线相互垂直的概率是
(A) (A) (A) (A)
数 学(文科)(安徽卷)
第Ⅱ卷(非选择题共100分)
请用0 5毫米黑色墨水签字笔在答题卡上作答,在试题卷上大体无效。
二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置·
(11)命题“存在x∈R,使得x2+2x+5=0”的否定是
(12)抛物线y2=8x的焦点坐标是
(13)如图所示,程序框图(算法流程图)的输出值x=
(14)某地有居民100000户,其中普通家庭99 000户,高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取l00户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收人家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是 .
(15)若a>0,b>0,a+b=2,则下列不等式对一切满足条件的a.
b恒成立的是 (写出所有正确命题的编号).
①ab≤1; ②+≤; ③a2+b2≥2;
④a3+b3≥3;
三、解答题:本大题共6小题.共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内。
(16)△ABC的面积是30,内角A,B,C,所对边长分别为a,b,c,cosA=.
(1)求
(2)若c-b=1,求a的值.
(17)椭圆E经过点A(2,3),对称轴为坐标轴,焦点F1,F2在x轴上,离心率.
(1)求椭圆E的方程;
(2)求∠F1AF2的角平分线所在直线的方程.
18、(本小题满分13分)
某市20104月1日—4月30日对空气污染指数的检测数据如下(主要污染物为可吸入颗粒物):
61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,
77,86,81,83,82,82,64,79,86,85,75,71,49,45,
(Ⅰ) 完成频率分布表;
(Ⅱ)作出频率分布直方图;
(Ⅲ)根据国家标准,污染指数在0~50之间时,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染。
请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.
(19) (本小题满分13分)
如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点,
(Ⅰ)求证:FH∥平面EDB;
(Ⅱ)求证:AC⊥平面EDB;
(Ⅲ)求四面体B—DEF的体积;
(20)(本小题满分12分)
设函数f(x)=sinx-cosx+x+1, 0﹤x﹤2∏,求函数f(x)的单调区间与极值.
(21)(本小题满分13分)
设,...,,…是坐标平面上的一列圆,它们的圆心都在x轴的正半轴上,且都与直线y=x相切,对每一个正整数n,圆都与圆相互外切,以表示的半径,已知为递增数列.
(Ⅰ)证明:为等比数列;
(Ⅱ)设=1,求数列的前n项和.
最新 |
热门 |
|