副标题: 适用地:【#qgi】 年份:【2011年高考卷】 关注:2次 分享到:
2011年普通高等学校招生全国统一考试
文科数学(必修+选修I)
本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。第Ⅰ卷1至2页。第Ⅱ卷3至4页。考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷
注意事项:
1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。请认真核准条形码上的准考证号、姓名和科目。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
3.第Ⅰ卷共l2小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
一、选择题
(1)设集合U=,则
(A) (B) (C) (D)[
(2)函数的反函数为
(A) (B)
(C) (D)
(3)权向量a,b满足a=b=,则
(A) (B) (C) (D)
(4)若变量x、y满足约束条件,则的最小值为
(A)17 (B)14 (C)5 (D)3
(5)(6)
(7)设函数,将的图像向右平移个单位长度后,所得的图像与原图像重合,则的最小值等于
(A) (B) (C) (D)
(9)曲线y=+1在点(0,2)处的切线与直线y=0和y=x围成的三角形的面积为
(A) (B) (C) (D)1
(10)设是周期为2的奇函数,当0≤x≤1时,=,则=
(A) - (B) (C) (D)
(11)设两圆、都和两坐标轴相切,且都过点(4,1),则两圆心的距离=
(A)4 (B) (C)8 (D)
(12)已知平面截一球面得圆M,过圆心M且与成,二面角的平面截该球面得圆N,若该球的半径为4,圆M的面积为4,则圆N的面积为
(A) (B) (c) (D)
第Ⅱ卷
注意事项:
1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。请认真核准条形码卜的准考证号、姓名和科目。
2.第Ⅱ卷共2页,请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,在试题卷上作答无效。
3.第Ⅱ卷共l0小题,共90分。
二、填空题:本大题共4小题,每小题5分,共20分把答案填在题中横线上 (注意:在试卷上作答无效)
(13)(1-)20的二项展开式中,x的系数与x9的系数之差为: .
(14)已知a∈(,),sinα=,则tan2α=
(15)
(16)已知F1、F2分别为双曲线C: - =1的左、右焦点,点A∈C,点M的坐标为(2,0),AM为∠F1AF2∠的平分线.则|AF2| = .
三、解答题:本大题共6小题,共70分解答应写出文字说明,证明过程或演算步骤
(17)(本小题满分l0分)(注意:在试题卷上作答无效)
设数列的前N项和为,已知求和
(18)△ABC的内角A、B、C的对边分别为a、b、c.己知
(Ⅰ)求B;
(Ⅱ)若
(19)
(20)如图,四棱锥中, ,,侧面为等边三角形, .
(Ⅰ)证明:SD⊥平面SAB
(Ⅱ)求AB与平面SBC所成角的大小
(21)已知函数
(Ⅰ)证明:曲线
(Ⅱ)若求a的取值范围。
(22)已知O为坐标原点,F为椭圆在y轴正半轴上的焦点,过F且斜率为的直线与C交与A、B两点,点P满足
(Ⅰ)证明:点P在C上;
(Ⅱ)设点P关于点O的对称点为Q,证明:A、P、B、Q四点在同一圆上。
最新 |
热门 |
|